

Ultra-Pure Phi29 DNA Polymerase

Cat. No. E014

Store at -20°C. Avoid repeated freeze-thaw cycles of all components to retain maximum performance. All components are stable for 1 year from the date of shipping when stored and handled properly.

Description

Ultra-Pure Phi29 DNA Polymerase is a highly processive polymerase which exhibits a strong strand-displacement function. These functions allow for highly efficient isothermal amplification of circular or linear DNA templates via rolling circle amplification (RCA), multiple displacement amplification (MDA) and/or whole genome amplification (WGA). Ultra-Pure Phi29 DNA Polymerase has extremely high fidelity due to its inherent 3'→5' exonuclease activity and can amplify from very small amounts of starting templates. The enzyme is subject to a rigorous multi-step purification protocol using physical, chemical, and enzymatic methods for maximum removal of contaminating genomic DNA. Quality control involves a non-specific DNase Activity Assay and qPCR DNA Contamination Test with a TaqMan probe.

Product Component	Quantity	Part No.
Ultra-Pure Phi29 DNA Polymerase	100 µl (200 rxn)	P014-1
5X Ultra-Pure Phi29 DNA Polymerase Reaction Buffer ¹	500 µl	P014-2

 1 Buffer contains 0.5 $\mu g/\mu I$ BSA. Keep at -20°C at all times except when using the product.

Product Applications

- Rolling circle amplification (RCA)
- Multiple displacement amplification (MDA)
- Whole genome amplification (WGA)
- DNA template preparation for sequencing
- Protein-primed DNA amplification

Product Source

Recombinant E. coli.

Enzyme Storage Buffer

50 mM Tris-HCI (pH 7.5), 0.1 mM EDTA, 1 mM DTT, 100 mM NaCl, and 50% (v/v) Glycerol.

Protocol

1. Thoroughly thaw and mix individual components before use, and assemble reaction on ice.

Component	Volume	
5X Ultra-Pure Phi29 DNA Polymerase Reaction Buffer	2 µl	
dNTPs	0.4 µl	
Random Primer Mix	0.5 µl	
Template DNA*	Variable*	
Nuclease-free ddH2O	Up 9.5 µl	

* Volume should be adjusted depending on the nature of the template: ≥ 1 pg (purified plasmid); ≥ 0.1 ul (liquid culture); ≥ 1 ul colony dissolved in double distilled water (plate colony).

- 2. Denature the samples at 95°C for 3 minutes (see General Notes).
- 3. Cool the samples to room temperature or 4°C.
- 4. Add 0.5 μl Ultra-Pure Phi29 DNA Polymerase.
- 5. Incubate at 30°C between 4 and 16 hours (see General Notes).
- Inactivate the Ultra-Pure Phi29 enzyme by incubating at 65°C for 10 minutes, and then cool to 4°C.
- 7. Analyze the amplification products by agarose gel electrophoresis.

General Notes

- We recommend optimizing the conditions of the 5X Ultra-Pure Phi29 DNA Polymerase Reaction Buffer to see if additional BSA is required.
- Denaturation will ensure DNA strands are well-separated, but may also result in releasing the plasmid instead of host DNA if working with plate colonies or liquid cultures.
- We recommend assembling MasterMixes and no template controls in a DNA-free environment to prevent contamination. Nuclease-free pipette tips and PCR tubes will also improve the results.
- The length of the reaction should be experimentally determined and optimized. Generally, longer templates will require extended incubation time. Therefore, we recommend performing a test reaction at several different periods (4-16 hours).